Búsqueda de Publicación - Prisma - Unidad de Bibliometría

Publicaciones en la fuente STOCHASTICS AND DYNAMICS

Tipo Año Título Fuente
Artículo2023The asymptotic behavior of solutions for stochastic evolution equations with pantograph delaySTOCHASTICS AND DYNAMICS
Artículo2022Continuity and topological structural stability for nonautonomous random attractorsSTOCHASTICS AND DYNAMICS
Artículo2022On a stochastic nonclassical diffusion equation with standard and fractional Brownian motionSTOCHASTICS AND DYNAMICS
Artículo2022On a stochastic nonlocal system with discrete diffusion modeling life tablesSTOCHASTICS AND DYNAMICS
Editorial2022Preface for the special issue in memory of Maria J. Garrido-AtienzaSTOCHASTICS AND DYNAMICS
Artículo2022Study of the dynamics of two chemostats connected by Fickian diffusion with bounded random fluctuationsSTOCHASTICS AND DYNAMICS
Artículo2022The continuity, regularity and polynomial stability of mild solutions for stochastic 2D-Stokes equations with unbounded delay driven by tempered fractional Gaussian noiseSTOCHASTICS AND DYNAMICS
Artículo2022Weak mean random attractors for non-local random and stochastic reaction-diffusion equationsSTOCHASTICS AND DYNAMICS
Artículo2016Existence and asymptotic behavior of solutions for neutral stochastic partial integrodifferential equations with infinite delaysSTOCHASTICS AND DYNAMICS
Artículo2013STOCHASTIC POROUS MEDIA EQUATION DRIVEN BY FRACTIONAL BROWNIAN MOTIONSTOCHASTICS AND DYNAMICS
Artículo2011RANDOM DIFFERENTIAL EQUATIONS WITH RANDOM DELAYSSTOCHASTICS AND DYNAMICS
Artículo2008Markov attractors: A probabilistic approach to multivalued flowsSTOCHASTICS AND DYNAMICS
Artículo2008Synchronization of systems with multiplicative noiseSTOCHASTICS AND DYNAMICS
Artículo2005On the stochastic 3D-Lagrangian averaged Navier-Stokes alpha-model with finite delaySTOCHASTICS AND DYNAMICS
Artículo2004PULLBACK AND FORWARD ATTRACTORS FOR A DAMPED WAVE EQUATION WITH DELAYSSTOCHASTICS AND DYNAMICS
Artículo2003The Exponential Behaviour of Nonlinear Stochastic Functional Equations of Second Order in TimeSTOCHASTICS AND DYNAMICS